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Conventional superconductors have vortices carrying integer multiples of magnetic flux quantum while
unconventional ones, with p- or d-wave order parameter, allow half-integer fluxes. Here, we show that meso-
scopic size effects stabilize fractional flux vortices in the thermodynamical ground state of s-wave two-gap
superconductors. The value of these fluxes can be an arbitrary fraction of flux quantum and can be measured
directly from distributions of magnetic fields on the samples.
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The quantization of magnetic fluxes associated to vortices
is one of the most direct demonstrations of the existence of
macroscopic quantum coherence in superconductors. The
phase of superconducting order parameter �OP� can change
only by multiples of 2� along any closed contour in ordinary
superconductors, which implies that the magnetic flux
threading the vortex is quantized in units of �0=hc /2�e�. In
contrast, the spin degree of freedom in triplet OP topologi-
cally allows half-quantum vortices.1,2 However, the energy
of these vortices diverges in bulk samples due to unscreened
spin currents.3 Theoretical arguments were given for their
stabilization by formation of pairs or by mesoscopic size
effects, where the divergent part of the energy is removed.4

However, the question whether such phases could be realized
as true thermodynamical ground state remains open. Half-
quantum vortices have been also predicted and actually ob-
served in heterostructures by combining d-wave supercon-
ductors with superconductors of other symmetries, which
resulted in �-Josephson junctions.5–7

Another type of fractional flux vortex was suggested in
the context of multicomponent/multiband superconductors.8,9

Recently, multicomponent models gained much attention in
connection with the discovery of two-gap superconductivity
in MgB2 �Ref. 10� and iron pnictides,11 where they are ex-
pected to exhibit a plethora of new properties,12–17 and also
appear in the description of the superfluidity of liquid metal-
lic hydrogen or deuterium16 and Bose-Einstein condensates
of dilute atomic gases.18 Fractional vortices in these systems
are quite different from those arising in unconventional su-
perconductors since they are neither bound to interfaces, like
the �-junction vortices, nor are they related to a special sym-
metry of OP. However, as in the case of unconventional su-
perconductors, such vortex phases are energetically forbid-
den in the bulk.9 This restriction is in full accord with the
fact that no fractional flux vortices have been observed to
date in all investigated multicomponent superconductors.
Contrary to that, we prove here that fractional flux vortices
exist in mesoscopic two-component superconductors as ther-
modynamically stable phases in a broad range of tempera-
tures, applied magnetic fields, and superconducting param-
eters. Moreover, our calculations show that fluxes associated
to these vortices can take arbitrary fractions of �0 and should
be observable with existing measuring techniques of mag-
netic field distributions.

For arbitrary �nonperiodic� vortex patterns, the flux asso-
ciated to each vortex threads the domain confined by a con-
tour �, which obeys the relation

�
�

j�l�dl

���l��2
= 0, �1�

where ��r� is the Ginsburg-Landau �GL� OP and j�r� is the
current density. Such definition of � automatically implies
the quantization of flux associated to a vortex in conven-
tional superconductors.19 In mesoscopic superconductors, the
quantization of the flux associated to a vortex is only defined
when the contour � lies entirely within the sample. When
this condition is not fulfilled,20 the fractionalization of this
flux arises in conventional superconductors21,22 as a simple
consequence of the fact that it has not entered yet entirely in
the sample. Note that even if the fluxes of individual vortices
are quantized, the total flux threading the mesoscopic sample
will be not. This is because a nonquantized flux passes
through the domain between the contour�s� � and the bound-
ary of the sample, where the current flow is diamagnetic. To
be distinguished from these situations, here, we consider the
case of fractionalization of the flux associated to a vortex
when it has entered completely in the superconductor, i.e.,
the contour � lies entirely within the sample.

The current density for the two-component super-
conductor is given by the GL expression j=−2e�
�� Im��1

���1 � /m1+Im��2
���2 � /m2 �−4�e2 /c� � ��1�2 / m1

+ ��2�2 /m2�A, where �1 and �2 are the OPs in the two con-
densates, −2e is the charge of the Cooper pair, and A is the
vector potential corresponding to the magnetic induction
b�r�. Choosing a contour � satisfying the relation

�
�

j�l�dl

��1�l��2

m1
+

��2�l��2

m2

= 0, �2�

we obtain for the magnetic flux threading the region confined
by �

�� = −
1

2�
�

�

Im��1�l�� � �1�l��
m1

+
Im��2

��l� � �2�l��
m2

��1�l��2

m1
+

��2�l��2

m2

dl�0.

�3�

For �2�r���1�r�, Eq. �3� reduces to the familiar flux quan-
tization, while in the case of a composite vortex with wind-
ing numbers L1 and L2 in the two condensates, respectively,
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we obtain in the London limit9 ��= �L1��1�2 /m1
+L2��2�2 /m2� / ���1�2 /m1+ ��2�2 /m2��0. The last expression
shows that the flux can become fractional if L1�L2, which,
however, is never the case in bulk superconductors as men-
tioned above.

Consider a long superconducting cylinder of radius R
�	�0� in external homogeneous field H applied along its
axis, described by a two-band GL free energy functional23

F = �
n=1

2

Fn +	 
 1

8�
�b − H�2 − 
��1

��2 + �1�2
���dV ,

�4�

where the single-band functionals Fn=���n��n�2

+�n��n�4 /2+ ��n�2 /2mn�dV with =−i��+ 2e
c A are

supplemented with the magnetic energy and the Josephson-
type coupling of the two condensates. For long cylinders, the
problem reduces to two dimensions and the solutions are
presented in the form: �1=��1� /�1�LuL�r /R�eiL�, �2
=��1� /�1�LvL�r /R�eiL�. The stable state is found by full
numerical minimization24 of the GL functional with respect
to uL, vL, and A in each point of space under the boundary
conditions �1 �n=0, �2 �n=0, and b �t=H at r=R.

We will assume that the first band is dominant, i.e., �2
becomes negative at a temperature lower than �1. The coher-
ence length is related to temperature via 	1

2=−�2 /2m1�1 and
�2 / ��1�=x20�	1 /R�2−�2 /�1 where x20 is a constant that
quantifies the difference of intrinsic critical temperatures be-
tween the two bands. It is then convenient to parametrize the
phase diagram with �R /	1�2 and �=�R2�H�. Figure 1 shows
the calculated phase diagram for m1=m2 and �1=�2 at dif-
ferent values of GL parameter � ���1=�2
=�0m1�1

1/2 / �2��3/2�2� and interband coupling x


=
 / ��2 /2m1R2�. At high temperature �close to the Tc�H�
boundary line�, the OPs are characterized by a giant vortex in
the center of the cylinder �L1=L2�, much as in the case of
conventional superconducting cylinders.25,26 We can see that
a cylinder of mesoscopic radius is an effective type-II super-
conductor �vortices penetrate it� even for ��1 /2 �Fig. 1,
bottom�, like in superconducting thin films.27 However, for
values ��0.35÷0.05, the whole superconducting domain on
the phase diagram is occupied by the Meissner phase �V0�.
The shaded closed regions �VL,L+1� in Fig. 1 correspond to
domains with fractional flux vortices as stable thermody-
namical phases. Figure 2 shows indeed that the phases with
fractional flux vortices are the lowest in energy in the corre-
sponding domains. As seen in Fig. 1, these domains shrink
with increasing 
 and decreasing �.

In order to calculate the flux associated with vortices ��,
we find first the contour � using the calculated current den-
sity distributions �Figs. 3�d�� and Eq. �2�. To this end, we
draw a closed line through the points where j�r� has zero
tangential component. Then, �� is found either by applying
Eq. �3� or by integrating the magnetic induction threading
the contour. The resulting �� is shown in the lower panel of
Fig. 2 as function of applied flux. We can see from the figure
that in the domains where the �� is fractional, it almost does
not vary with the field, looking like a step of intermediate

�fractional� height. The height of these steps evolves mono-
tonically from zero at some higher temperature till some
fractional value at T=0. The overall picture is shown in Fig.
4. It shows, in particular, the existence of finite domains on
the phase diagram where the fractional flux varies monotoni-
cally in a broad range of values. Thus, continuous changes in
fractional flux could be detected via the measurements of the
field distributions at different temperatures.

To understand the reason for the fractionalization of ��,
we investigate the OPs �1 and �2 in different regions of the
phase diagram �Figs. 3�a� and 3�b��. At a high temperature,
�dashed line� the two OPs correspond to the giant vortex
with the same vorticity �L=1�, and, moreover, are propor-
tional to each other. Then, according to Eq. �3�, we obtain
�� /�0=1, i.e., the vortex flux is quantized. For temperature
low enough, the giant vortex in the second band mostly cor-
responds to L=2, while the active band still contains the
same giant vortex with L=1. Given this difference in the two
OPs, Eq. �3� will result in a fractional value of ��. The
current distribution for this state is shown in Fig. 3�d�.

The Josephson-type interaction between two condensates
favors maximal overlap of �1�r� and �2�r�. The two con-
densates also interact indirectly through the magnetic induc-

FIG. 1. �Color online� Phase diagram of the two-component
superconducting cylinder for �=10 �top�, 3 �middle�, and 0.5 �bot-
tom� �x20=12, 20, and 0.5, respectively� with x
=0.01. It is divided
into domains of superconducting states with no vortex �V0�, with a
central giant vortex of winding number L in each condensate �CVL�,
and with Ln separated vortices in the n-th condensate �VL1,L2

�.
Dashed and dotted lines delineate the domains where fractional flux
vortices exist as stable phases for x
=0.05 and 0.1, respectively.
The stars on the plots denote points at which current distributions
are shown in Fig. 3.
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tion. When expressed with normalized quantities, it can be

shown to the first order in �−2 that F̃=�nF̃n��̃n , Ã0�
− 
̃���̃1

��̃2+�̃1�̃2
��−�−2�� j̃�r� j̃�r�� / �r−r��, where

F̃n��̃n , Ã0� is the functional of the n-th condensate in the

unperturbed applied field with the vector potential Ã0. The
last term in the normalized functional favors the maximal
overlap of the current distributions in the two condensates,
i.e., the maximal similarity of the two OPs. This explains
why the domains of the existence of fractional flux vortices
shrink with the increase of 
�x
� and the decrease of � �Fig.
1�.

For MgB2, the most investigated two-band supercon-
ductor, the Josephson coupling is moderately weak: the
smallest estimate is 
�0.3��1� �Refs. 17 and 28�, which
yields x
�0.3�R /	1�2. Our numerical minimizations have
not found any flux fractionalization for x
�0.2 or �R /	1�2

�3. These limitations mean that 
 in MgB2 is at least five
times too large. However, there is no reason why 
 cannot be
lower in other multiband superconductors. Among the prom-
ising candidates, we can cite the heavy fermion compound
UNi2Al3,29 the quaternary borocarbide YNi2B2C, �Refs. 30�
or the ternary-iron silicide Lu2Fe3Si5 �Ref. 31� where stron-
ger deviations from the predictions for a single gap suggest
that their interband couplings may be weaker than in MgB2.

The flux fractionalization can be understood as resulting
from the combination of two weakly interacting condensates
which, when uncoupled, individually prefer states of differ-
ent vorticities for the same applied magnetic field. So, this
mechanism is not restricted to the particular sample symme-
try studied here and should be present in other geometries
too. For example, the unlocking of the condensate vorticities

is not specific to long cylinders since it exists as well in the
opposite limit of thin disks. We have furthermore checked
that it can also occur in cylinders with different central
holes.20

We notice from Fig. 3 that the contour � is circular for
central vortex phases and is still very close to a circular

FIG. 2. �Color online� Top: the free energy of the two-
component superconducting cylinder for different symmetries of the
OP for �=10 and R2 /	1

2=25. Vertical dot lines delineate the do-
mains with fractional flux vortices in the stable thermodynamic
phase. Bottom: The flux associated to vortices ���� in the stable
thermodynamic phase.

FIG. 3. �Color online� OP components uL �a� and vL �b� for
R2 /	1

2=24 �dashed line� and 27 �solid line�, corresponding to quan-
tized and fractional vortex phases. �c� Radial variation in the mag-
netic induction in the corresponding phases. �d� Current density
distributions and streamlines for values of R2 /	1

2 indicated by stars
on Fig. 1. The position of vortices in the two condensates is denoted
by crosses for the first band and by squares for the second band.
The contour � is shown by the white dashed line.

FIG. 4. �Color online� The flux associated to vortices ���� cor-
responding to the phase diagram in the upper plot of Fig. 1. Do-
mains corresponding to fractional vortex fluxes are clearly seen as
nonhorizontal intermediate �noninteger� steps.
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shape for OPs characterized by low vorticity, despite the fact
that the vortices are deconfined �vortices in the two conden-
sates are spatially separated�. The distribution of the mag-
netic induction for these states �Fig. 3�c�� shows a character-
istic depletion at a radius which coincides exactly with the
position of the contour �. Therefore, for experimental deter-
mination of �� in these states, it would be sufficient to inte-
grate the measured distribution of b�r� in the region confined
by this depletion. The amplitude of the variation in magnetic
induction is ca 5% for �=10 and ca 20% for �=3, which is
larger than the accuracy of the current measuring techniques.
For phases of higher vorticity or samples of noncylindrical
geometry, the contour � is not circular anymore. In such
cases, the distribution of currents should be obtained first
from the measured distribution of magnetic induction on the
top surface using the relation j�r�= �c /4��� �b�r�. Then,
the contour � can be found as the line on which the current
has no tangential component.

In conclusion, we have proven by exact calculations
within GL theory that fractional vortices, carrying arbitrary

fraction of flux quantum �Fig. 4�, exist in mesoscopic two-
component superconductors as stable thermodynamic phases
in a broad range of superconducting parameters, temperature,
and applied magnetic field. The origin of stabilization of
these vortex phases is the different effect of the confinement
on the two condensates exerted by the boundary of the
sample, i.e., is a pure mesoscopic effect. This effect is coun-
teracted by the Josephson coupling between the two conden-
sates and the magnetic field induced by the screening cur-
rents, both favoring similar distributions of the OPs. The
obtained fractional flux vortices should be observable with
available experimental techniques for the investigation of
magnetic field distribution.
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